SFV 500 Safety Valve

Description

The SFV500 is a full lift, full nozzle safety valve

Suitable for Steam, air, inert industrial gas and non-hazardous service.

this valves have close bonnet, lifting lever and metal on metal seal.

SFV500 is designed according to BS 6759 parts 1, 2 and 3.

SFV500 is suitable for:

steam or hot water boilers, vessels and general relief applications.

Sizes and pipe connections

	Screwe	d Connect	.1011 111 11	IIII & Kg	(approxi	matej	
Size	Connection		Α	В	C	D	weight
	inlet	outlet					
DN 20	3/4"	1-1/4"	55	44	229	20	2.4
DN 25	1"	1-1/2"	60	48	242	24	2.9
DN 32	1-1/4"	2"	70	58	279	29	4.2
DN 40	1-1/2"	2-1/2"	81	67	365	37	8.8
DN 50	2"	3"	96	80	420	46	13

Connections: Screwed and Flanged type

Dimensions are approximate and in mm.

Limiting Conditions

Body design	PN :	25
Set pressure range	DN 20 to DN32	0.3 to 18 bar
	DN40 and DN50	.3 to 14 bar
Temperature range	Stainless steel seat	-90°C to +300°C
Max. cold hydrostatic test pressure	38 b	ar

SFV500 Safety Valve

Material

NUM.	Part name	Material	
1	Body	Bronze	
2	Nozzle	Stainless steel	
3	Disk	Stainless steel	
4	Lever housing	Bronze	
5	Spring	Alloy steel	
6	Steam guide	Brass	
7	Spring end plate	Brass	
8	Stem	Stainless steel	
9	Adjustment screw	Brass	
10	Lever	SG iron	
11	Pivot pin	Stainless steel	
12	Circlip	Stainless steel	
13	Grub screw	Alloy steel	
14	Adjuster lock nut	Brass	
15	Gas tight cap	Bronze	
16	Gas tight cap seal	Nit rile	
17	Skirt	Brass	

Capacities for saturated steam

Valve DN	20/32	25/40	32/50	40/65	50/80		
Area(mm²)	314	452	661	1 075	1 662		
Set pressure (bar g)	flow capacity for saturated steam (kg/h)						
5.0	733	1 055	1 543	2 510	3 880		
10	1 348	1 940	2 837	4 613	7132		
		2 824	4 130	240000000000000000000000000000000000000	200 000000000		

Installation

- the centre line of the spring housing should be vertically above the valve.
- the inlet connection to the valve should be as short as possible and no smaller in area than the flow diameter of the valve. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$
- the outlet pipe work should also be short, of a size no smaller in area than the valve outlet bore size.
- for steam or air service, discharge lines should rise vertically and should be fitted with drain.
- pipe work should be supported.

How to order

size: DN 20,25,32,40,50

working pressure & temperature (bar g),(C)

set pressure:---(bar g)

condition of gas or liquid medium